Request demo
en
Site language:
Biometric software product with robust user authentication for unlocking a device or gaining access to operating systems or apps
A biometric software product for increasing the level of security at the facility during video surveillance
A biometric software product for biometric identity verification in access control and management systems
A biometric software product for displaying personalized media content
A biometric software product with facial recognition for reliable identity check
A biometric software product with facial recognition that expands the electronic queue systems with personalized services for visitors
A software product that provides simple and reliable working time and attendance by identifying faces using tablets, IP cameras, or terminals
A biometric software product with facial recognition that provides enhanced communication with clients
A biometric software product that provides a reliable and quick check of the gym clients access right without employee’s participation
A new level of work with visitors and employees of Business centers opened with the help of biometric products
Biometrics for convenient service to citizens, including remote monitoring of the quality of personnel work
Biometric monitoring of working hours and additional security tools for industrial facilities
Modern methods of biometric analytics for safe operation of sports facilities
Convenient and secure transport solutions based on the digital identity of the passenger
Biometric solutions for a new level of security and interaction with visitors
Biometric video Analytics for targeted marketing and personnel control in distributed networks
Biometric products for proctoring and video surveillance systems in educational institutions
Keyless biometric access to rooms, targeted approach to each client and information about the time of work for employees
Necessary tool for the security and competitiveness of a modern Bank
Improving the level of security, speed of investigations and timely prevention of illegal acts in the urban public space
Customer-oriented solutions, acceleration of the work process of the registry area, control of the staff of the entire institution
RecFaces makes facial biometrics simple and applicable. We provide a wide range of ready-made biometric solutions for businesses to upgrade their security and technological efficiency.
We are ready for cooperation and sales through the partner network. To get advice on your project, please contact us by e-mail sales@recfaces.com
It is our principal and invaluable resource. Talented and energetic people of our team unite the like-minded ones which helps to expand expertise and company’s growth.
Join us!
We are always happy to answer all your questions. Contact us in any way convenient for you.
We share our long-term expertise
in the development of biometric software
Comprehensive information for your projects.
Just theory, practice and statistics
Discover our latest news and updates
on facial recognition technology
Find out more about
RecFaces company here

Pattern Recognition Guide 2021

What Is Pattern Recognition in Machine Learning: Full Guide — RecFaces

Nowadays, pattern recognition is applied in numerous areas of technology dealing with big data. Although the basic components of pattern recognition systems are the same, there is a variety in ways those can be realized and utilized.

Below you will find a brief explanation of the principles and implementations of pattern recognition technology, as well as answers to some common questions.

Table of Contents

Pattern Recognition Definition
How Does Pattern Recognition Work?
Pattern Recognition Approaches
The Basic Components of Pattern Recognition Systems
Pattern Recognition Examples
Pattern Recognition Algorithm for Machine Learning
Types of Pattern Recognition
Image
Sound
Voice
Speech
Why Is Pattern Recognition Important?
Neural Networks for Pattern Recognition
Other Uses of Pattern Recognition
FAQ
What is an example of pattern recognition?
What are the types of pattern recognition?
How do humans recognize patterns?
Is pattern recognition a sign of intelligence

Pattern Recognition Definition

Pattern recognition, simply put, is a process in which a machine finds and recognizes regularities (patterns) in data by applying machine learning algorithms. It can be seen as a kind of highly developed data classification.

How Does Pattern Recognition Work?

Pattern recognition is a complex process of analyzing the input data, extracting patterns, comparing them with certain standards, and using the results to guide the future actions of the system.

Therefore, a pattern recognizer has to possess a diversified set of functions. Recognizing familiar patterns automatically is a basic one. However, in many cases, to function properly, the system should be able to recognize unfamiliar objects and classify them, as well as recognize objects even when the data about them may seem insufficient.

Pattern Recognition Approaches

There are three basic approaches that pattern recognition algorithms utilize:

  • Statistical. This approach is based on statistical decision theory. Pattern recognizer extracts quantitative features from the data along with the multiple samples and compares those features. However, it does not touch upon how those features are related to each other.
  • Structural (a.k.a. syntactic). This approach is closer to how human perception works. It extracts morphological features from one data sample and checks how those are connected and related.
  • Neural. In this approach, artificial neural networks are utilized. Compared to the ones mentioned above, it allows more flexibility in learning and is the closest to natural intelligence.

The Basic Components of Pattern Recognition Systems

Every machine learning-based pattern recognition algorithm includes the following steps.

  • Input of data. Large amounts of data enter the system through different sensors.
  • Preprocessing or segmentation. At this stage, the system groups the input data to prepare the sets for future analysis.
  • Feature selection (extraction). The system searches for and determines the distinguishing traits of the prepared sets of data.
  • Classification. Based on the features detected in the previous step, data is assigned a class (or cluster), or predicted values are calculated (in the case of regression algorithms).
  • Postprocessing. According to the outcome of the recognition, the system performs future actions.

Pattern Recognition Examples

Examples of pattern recognition can be easily found in nature, like humans recognizing faces or pets responding to their names. In technology, pattern recognition algorithms trained through machine learning are applied in various fields, ranging from everyday tasks to highly specialized areas.

Here are some typical examples:

  • NLP (natural language processing): virtual assistants, speech-to-text interfaces, automatic captioning;
  • OCR scanners (optical character recognition): mobile scanner apps;
  • Medical diagnostic software;
  • Meteorological forecast software;
  • NIDS (Network intrusion detection systems): security systems, which recognize patterns of suspicious activities.

Pattern Recognition Algorithm for Machine Learning

Pattern recognition algorithms are inseparable from machine learning. When training the pattern recognizer, supervised and unsupervised learning approaches are commonly utilized.

In supervised machine learning, the human participant prepares representative sets of data (referred to as training sets) designed to illustrate the patterns which the system is expected to learn to recognize. After processing those sets, the system's performance is checked by exposing it to other data of a similar format, organized in so-called test sets.

The kind of pattern recognition trained this way is referred to as classification.

When machine learning is unsupervised, the involvement of a human component and pre-existing patterns is reduced to a minimum. In this case, the algorithm is trained to detect new patterns without using any already existing labels, just by being introduced to the large sets of data. Hierarchical or k-means clustering algorithms are often used in this approach. Consequently, the pattern recognition obtained through this type of learning is referred to as clustering.

Alongside machine learning, deep learning is also implemented in training pattern recognizers when it comes to neural networks.

Types of Pattern Recognition

Image

https://recfaces.com/wp-content/uploads/2021/06/pattern-recognition.png

This type of pattern recognition enables identifying particular objects depicted in images. Image recognition is a core part of computer vision, which is basically the ability of a machine to recognize images and take corresponding actions (e.g., a self-driving car slowing down after identifying a pedestrian ahead).

Image recognition is commonly implemented in such processes as:

  • Visual search;
  • OCR (optical character recognition);
  • Face detection.

Sound

This type of pattern recognition is used for identifying various sounds. By analyzing audio signals, the system labels them as belonging to a certain category. Here are some examples where sound pattern recognition can be used:

  • Surveillance alarm detection;
  • Identifying animal species;
  • Melody recognition.

Voice

This type of pattern recognition analyzes the sounds of a human voice to identify the speaker. Unlike speech recognition, it does not involve language processing and solely spots personal characteristics in a speaking pattern. It is used mostly for security purposes (personal identification). Common areas of usage include:

  • Mobile or web applications;
  • Internet of things.

Speech

Much like optical character recognition identifies letters and words on the image, speech recognition captures elements of a language in the sound of a person speaking. For this technology, widespread areas of usage include:

  • Voice-to-text converters;
  • Auto captioning for videos;
  • Virtual assistants.

Why Is Pattern Recognition Important?

Nowadays, pattern recognition serves as a basis for a number of technologies used in everyday life. Face recognition can be one of the most common examples of implementing pattern recognition on a complex level, as it involves processing a large set of visual elements that make a person's face unique.

Face recognition, as well as other biometrics technologies, have already tremendously influenced the process of identity verification and will continue to influence our society.

Besides, pattern recognition is an irreplaceable analytical tool as well. Complex big data analyses, like stock market prediction, business analytics, or medical diagnostics rely on pattern-recognizing algorithms. WIthout seamless pattern recognition, drawing meaningful conclusions from large sets of data would be impossible.

Neural Networks for Pattern Recognition

Using neural networks for pattern recognition is the most flexible approach to the task. These networks are comparatively autonomous in learning to recognize patterns and are capable of constant development and self-organization. Neural networks make it possible to solve tasks that could probably never be solved using only statistical algorithms.

This adaptiveness and functionality make neural networks widely implemented in pattern recognition software. The most popular type in this area is feedforward neural networks, where information moves in one direction only. Those are often used for tasks of speech recognition or identifying objects.

Other Uses of Pattern Recognition

One of the most promising areas for using pattern recognition is that of biometric identification programs. Making identification fast and accurate, it elevates the levels of security in different areas and improves people's experience with various products and services.

That's why at RecFaces, we focus on developing software products that help businesses to increase their performance with the benefits of biometric identification. Our software levels up the functionality of CCTV, helping to regulate access to control systems, supervise the personnel, or use the gym comfortably.

With pattern recognition technologies, we assist in improving the security and quality of management and user experience in educational and medical institutions, industrial facilities, banks, hotels, gyms, and other institutions.

FAQ

What is an example of pattern recognition?

As an example of natural pattern recognition, one can think about filling in the missing letters in a word. For technology, it could be the camera detecting faces when the photo is being taken or the phone memo app turning voice into text.

What are the types of pattern recognition?

There are three main types of pattern recognition, dependent on the mechanism used for classifying the input data. Those types are: statistical, structural (or syntactic), and neural. Based on the type of processed data, it can be divided into image, sound, voice, and speech pattern recognition.

How do humans recognize patterns?

The human brain is evolutionarily wired to recognize patterns in the surrounding environment. To do so, it constantly matches the current sensory input with the information from the previous experience stored in the long-term memory.

Is pattern recognition a sign of intelligence?

Being a foundation for predicting and making decisions, pattern recognition is one of the main factors that determine the level of general intelligence. The ability to recognize patterns can be regarded as a sign of intelligence, although the exact definition of the latter may vary.

Here you can rate our article
Here you can rate our article
Thanks!

Subscribe to our newsletter